OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503 Random Signals and Noise Spring 2002

Final Exam

Choose any four out of five problems, *Please specify* 1)___; 2)___; 3)___; 4)___;

Name : _____

Student ID: _____

E-Mail Address:_____

Problem 1:

In a computer simulation it is desired to transform numbers, that are values of a random variable X uniformly distributed on (0,1), to numbers that are values of a Cauchy random variable Y as defined by

$$F_{Y}(y) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1}(\frac{y}{b}).$$

Find the required transformation *T*.

<u>Problem 2</u>: The random variables X and Y are statistically independent with exponential densities

 $f_X(x) = \alpha e^{-\alpha x} u(x)$, and

$$f_{y}(y) = \beta e^{-\beta y} u(y).$$

Find the probability density function of the random variable $Z = \min(X, Y)$.

<u>**Problem 3**</u>: The random variables X and Y are statistically independent with Rayleigh densities

$$f_X(x) = \frac{x}{\alpha^2} e^{-x^2/2\alpha^2} u(x)$$
, and
 $f_Y(y) = \frac{y}{\beta^2} e^{-y^2/2\beta^2} u(y)$.

Show that if Z = X / Y, then

$$f_{Z}(z) = \frac{2\alpha^{2}}{\beta^{2}} \frac{z}{(z^{2} + \alpha^{2} / \beta^{2})^{2}} u(z) .$$

Problem 4:

A random process is defined by

 $Y(t) = X(t)\cos(\omega_0 t + \Theta),$

where X(t) is a wide-sense stationary ranom process that amplitude-modulates a carrier of constant angular frequency ω_0 with a random phase Θ independent of X(t) and uniformly distributed on $(-\pi,\pi)$. Find E[Y(t)] and autocorrelation function of Y(t). Is Y(t) wide-sense stationary?

Problem 5:

A random process is given by

 $X(t) = A\cos(\Omega t + \Theta)$

where A is a real constant, Ω is a random variable with density function $f_{\Omega}(\cdot)$, and Θ is a random variable uniformly distributed on the interval $(0, 2\pi)$ independently of Ω . Show that the power spectrum of X(t) is

$$S_{XX}(\omega) = \frac{\pi A^2}{2} [f_{\Omega}(\omega) + f_{\Omega}(-\omega)].$$